\(\int \frac {\cos (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx\) [560]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 21, antiderivative size = 338 \[ \int \frac {\cos (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\frac {(a-b) \sqrt {a+b} \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a b d}+\frac {\sqrt {a+b} \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a d}+\frac {b \sqrt {a+b} \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a^2 d}+\frac {\sqrt {a+b \sec (c+d x)} \sin (c+d x)}{a d} \]

[Out]

(a-b)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c
))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/a/b/d+cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),
((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/a/d+b*cot(d*x+
c)*EllipticPi((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),(a+b)/a,((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a
+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/a^2/d+sin(d*x+c)*(a+b*sec(d*x+c))^(1/2)/a/d

Rubi [A] (verified)

Time = 0.33 (sec) , antiderivative size = 338, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {3946, 4144, 4006, 3869, 3917, 4089} \[ \int \frac {\cos (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\frac {b \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{a^2 d}+\frac {\sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{a d}+\frac {(a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{a b d}+\frac {\sin (c+d x) \sqrt {a+b \sec (c+d x)}}{a d} \]

[In]

Int[Cos[c + d*x]/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

((a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqr
t[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(a*b*d) + (Sqrt[a + b]*Cot[c + d*x]
*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]
*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(a*d) + (b*Sqrt[a + b]*Cot[c + d*x]*EllipticPi[(a + b)/a, ArcSin[Sqr
t[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c
 + d*x]))/(a - b))])/(a^2*d) + (Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(a*d)

Rule 3869

Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[2*(Rt[a + b, 2]/(a*d*Cot[c + d*x]))*Sqrt[b
*((1 - Csc[c + d*x])/(a + b))]*Sqrt[(-b)*((1 + Csc[c + d*x])/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b
*Csc[c + d*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0]

Rule 3917

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(Rt[a + b, 2]/(b*
f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin
[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3946

Int[1/(csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]), x_Symbol] :> Simp[(-Cos[e + f*x])*
(Sqrt[a + b*Csc[e + f*x]]/(a*f)), x] - Dist[b/(2*a), Int[(1 + Csc[e + f*x]^2)/Sqrt[a + b*Csc[e + f*x]], x], x]
 /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4006

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c, In
t[1/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[d, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a,
b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 4089

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + C
sc[e + f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b*(B/A), 2]], (a
*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rule 4144

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Int[(A
- C*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]], x] + Dist[C, Int[Csc[e + f*x]*((1 + Csc[e + f*x])/Sqrt[a + b*Csc[e
 + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, C}, x] && NeQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\sqrt {a+b \sec (c+d x)} \sin (c+d x)}{a d}-\frac {b \int \frac {1+\sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{2 a} \\ & = \frac {\sqrt {a+b \sec (c+d x)} \sin (c+d x)}{a d}-\frac {b \int \frac {1-\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{2 a}-\frac {b \int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx}{2 a} \\ & = \frac {(a-b) \sqrt {a+b} \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a b d}+\frac {\sqrt {a+b \sec (c+d x)} \sin (c+d x)}{a d}-\frac {b \int \frac {1}{\sqrt {a+b \sec (c+d x)}} \, dx}{2 a}+\frac {b \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{2 a} \\ & = \frac {(a-b) \sqrt {a+b} \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a b d}+\frac {\sqrt {a+b} \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a d}+\frac {b \sqrt {a+b} \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a^2 d}+\frac {\sqrt {a+b \sec (c+d x)} \sin (c+d x)}{a d} \\ \end{align*}

Mathematica [A] (warning: unable to verify)

Time = 5.89 (sec) , antiderivative size = 239, normalized size of antiderivative = 0.71 \[ \int \frac {\cos (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\frac {2 \sqrt {\frac {\cos (c+d x)}{(1+\cos (c+d x))^2}} \left (\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)\right )^{3/2} \left ((a+b) E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right ) \sqrt {\frac {(b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}-2 b \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right ) \sqrt {\frac {(b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}+(b+a \cos (c+d x)) \sqrt {\cos (c+d x) \sec ^2\left (\frac {1}{2} (c+d x)\right )} \tan \left (\frac {1}{2} (c+d x)\right )\right )}{a d \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \]

[In]

Integrate[Cos[c + d*x]/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(2*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])^2]*(Cos[(c + d*x)/2]^2*Sec[c + d*x])^(3/2)*((a + b)*EllipticE[ArcSin[T
an[(c + d*x)/2]], (a - b)/(a + b)]*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)] - 2*b*EllipticPi[-1
, ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)] + (b + a*
Cos[c + d*x])*Sqrt[Cos[c + d*x]*Sec[(c + d*x)/2]^2]*Tan[(c + d*x)/2]))/(a*d*Sqrt[Sec[c + d*x]]*Sqrt[a + b*Sec[
c + d*x]])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(828\) vs. \(2(309)=618\).

Time = 7.38 (sec) , antiderivative size = 829, normalized size of antiderivative = 2.45

method result size
default \(\text {Expression too large to display}\) \(829\)

[In]

int(cos(d*x+c)/(a+b*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/d/a*(2*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticPi(cot(d*x+
c)-csc(d*x+c),-1,((a-b)/(a+b))^(1/2))*b*cos(d*x+c)^2-EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos
(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*cos(d*x+c)^2-EllipticE(cot(d*x
+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1)
)^(1/2)*b*cos(d*x+c)^2+4*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*Ell
ipticPi(cot(d*x+c)-csc(d*x+c),-1,((a-b)/(a+b))^(1/2))*b*cos(d*x+c)-2*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a
+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*cos(d*x+c)-2*E
llipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c)
)/(cos(d*x+c)+1))^(1/2)*b*cos(d*x+c)+2*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticPi(cot(d*x+c)-c
sc(d*x+c),-1,((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b-EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(
a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a-EllipticE(cot
(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c
)+1))^(1/2)*b+cos(d*x+c)^2*sin(d*x+c)*a+cos(d*x+c)*sin(d*x+c)*b)*(a+b*sec(d*x+c))^(1/2)/(b+a*cos(d*x+c))/(cos(
d*x+c)+1)

Fricas [F]

\[ \int \frac {\cos (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {\cos \left (d x + c\right )}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate(cos(d*x+c)/(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(cos(d*x + c)/sqrt(b*sec(d*x + c) + a), x)

Sympy [F]

\[ \int \frac {\cos (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\int \frac {\cos {\left (c + d x \right )}}{\sqrt {a + b \sec {\left (c + d x \right )}}}\, dx \]

[In]

integrate(cos(d*x+c)/(a+b*sec(d*x+c))**(1/2),x)

[Out]

Integral(cos(c + d*x)/sqrt(a + b*sec(c + d*x)), x)

Maxima [F]

\[ \int \frac {\cos (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {\cos \left (d x + c\right )}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate(cos(d*x+c)/(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)/sqrt(b*sec(d*x + c) + a), x)

Giac [F]

\[ \int \frac {\cos (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {\cos \left (d x + c\right )}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate(cos(d*x+c)/(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(cos(d*x + c)/sqrt(b*sec(d*x + c) + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\int \frac {\cos \left (c+d\,x\right )}{\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}} \,d x \]

[In]

int(cos(c + d*x)/(a + b/cos(c + d*x))^(1/2),x)

[Out]

int(cos(c + d*x)/(a + b/cos(c + d*x))^(1/2), x)